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A B S T R A C T   

We present a framework for constructing predictive models of cognitive decline from longitudinal MRI exami-
nations, based on mixed effects models and machine learning. We apply the framework to detect conversion from 
cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to Alzheimer’s disease (AD), using a 
large collection of subjects sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the 
Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL). We extract subcortical segmen-
tation and cortical parcellation from corresponding T1-weighted images using FreeSurfer v.6.0, select bilateral 
3D regions of interest relevant to neurodegeneration/dementia, and fit their longitudinal volume trajectories 
using linear mixed effects models. Features describing these model-based trajectories are then used to train an 
ensemble of machine learning classifiers to distinguish stable CN from converters to MCI, and stable MCI from 
converters to AD. On separate test sets the models achieved an average of accuracy/precision/recall score of 
69/73/60% for converted to MCI and 75/74/77% for converted to AD, illustrating the framework’s ability to 
extract predictive imaging-based biomarkers from routine T1-weighted MRI acquisitions.   

1. Introduction 

About 50 million people world-wide suffer from dementia (World 
Health Organization, 2019), with a new case appearing every 

3.2 seconds (Prince, 2015). The total cost of dementia care has risen to 
above one trillion US dollars after 2018 (World Health Organization, 
2019; Prince, 2015). The most common form of dementia is Alzheimer’s 
disease (AD), responsible for up to 60 − 70% of cases (Prince, 2015). AD 
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is aging-related, mostly inflicting people above 60 years. This is a 
steadily growing age group: in the 20th and 21st centuries, both the 
overall population levels and life expectancy increased drastically, a 
trend that shows no sign of stopping. In 2018, for the first time recorded 
in history, people aged 65 and older outnumbered children five years or 
younger. Currently, about one in 11 people in the world are above 65, 
and this is expected to increase to one in six by 2050. The number of 
people above 80 years is projected to rise from 143 million in 2019 to 
426 million in 2050 (United Nations Department of Economic and Social 
Affairs Population Division, 2017). 

There has been extensive research into biological and neurological 
alterations with aging. It is well-known that aging causes a decline in 
processing speed, working memory and inhibitory function, as well as 
atrophy in several brain structures (Park and Reuter-Lorenz, 2009; 
Brookmeyer et al., 2007). These normally-appearing damages intensify 
with aging-related diseases, making the discrimination between normal 
and disease-related aging both challenging and important (Reuter--
Lorenz and Lustig, 2005). 

Alzheimer’s disease is a chronic neurodegenerative disease causing 
the death of neurons. As neurons commonly do not reproduce or get 
replaced, preventing damage in the first place is crucial to slow its 
progression. There is no cure for AD – even moderate forms refuse 
treatment – but medication can affect patients with mild forms of the 
disease (Dodel et al., 2013; Montgomery et al., 2003). For this reason, as 
well as optimizing treatment plans, early disease detection and predic-
tion is crucial (Siemers et al., 2016; Guerrero et al., 2016). 

In aging, brain atrophy is normal. However, in dementia certain 
regions of the brain have increased speed of atrophy (Park and 
Reuter-Lorenz, 2009; Leong et al., 2017; Rodrigue and Raz, 2004; 
Lundervold et al., 2019; Chandra et al., 2019). While the distinction 
between the neurodegenerative changes by normal aging and those that 
characterise AD is not evident, studies have shown that greater 
shrinkage in specific brain regions is linked to AD (Leong et al., 2017; 
Raz, 2000; West et al., 1994). For example, hippocampal volume re-
ductions and ventricular expansions show different patterns in healthy 
aging and in dementia (Thompson et al., 2004), and both can be 
considered as imaging biomarkers to investigate the rate of brain dete-
rioration (Leong et al., 2017; West et al., 1994; Raz, 2000). The change 
in the brain has been quantified with different methods and techniques, 
such as counting neuronal cell loss in brain regions (West et al., 1994) 
and by calculating the changes in the volume of the brain regions from 
neuroimaging data (Leong et al., 2017; Raz, 2000). 

Such imaging findings, and the uncertainty in the clinical diagnosis 
of AD, leads to both a need and a potential for further quantitative and 
indicative imaging biomarkers. In recent years, researchers have con-
structed a variety of analysis tools and approaches to investigate the 
aging process in the brain using MRI data, often including machine 
learning methods (Falahati et al., 2014; Guerrero et al., 2016; Jack et al., 
2008; Klöppel et al., 2008; Scheltens et al., 1992; Shi et al., 2009). 

While there have been many promising results, there are several 
limitations in these methods and approaches. For example, an assump-
tion underlying many of the proposed machine learning approaches is 
that the data instances in follow-up MRI examinations are independent 
and identically distributed. However, in longitudinal data there are 
certainly correlations (Falahati et al., 2014; Ngufor et al., 2019; Lei 
et al., 2017), and using proper longitudinal analysis designs have some 
important advantages, such as reducing the confounding effect of 
between-subject variability and making it possible to use non-
independent data. Some recent works have taken this into account 
(Ngufor et al., 2019; Lei et al., 2017; Huang et al., 2016; Zhang et al., 
2012; Lim and van der Schaar, 2018), but additional limitations remain. 
One limitation that the present study aims to overcome is an assumption 
underlying many other approaches: that all subjects have the same 
number of measurements, and, even, that the measurements are recor-
ded over the same time interval lengths for the entire sample set. In 
practice, these assumptions are often invalid, leading other studies to 

remove instances from their data set (Zhang et al., 2012). 
In the present study, we propose a pipeline that is better adapted to 

such situations. It is a framework based on a combination of mixed ef-
fects models (LME) and an ensemble machine learning model (Fig. 2). 
We used linear time-dependent mixed effects model parameters to 
derive representative features from the MRI measurements in the pre-
dictive machine learning models. Our approach applies to situations 
where subjects have varying number of MRI examinations, potentially 
recorded at different scan intervals. It is also possible to include subjects 
that were examined at a single time-point. The mixed effects modelling 
is applied to the volumetry of brain regions computed by FreeSurfer 
v.6.0 (Fischl, 2012), enabling extraction of subject- and region-specific 
longitudinal volume trajectories (Fig. 1). The instability and fluctua-
tions observed when analysing brain structure volumes from MRI over 
time, caused by e.g. computational instabilities, noise, hydration status, 
scanner upgrades, time-of-day at scanning (Trefler et al., 2016) or slight 
variation in the acquisition protocol, and not changes in the brain pa-
renchyma per se, become less influential by using a LME model (Fig. 1b). 
This makes the representation of individual volume trajectories more 
robust, and the prediction of longitudinal group differences more precise 
(Bernal-Rusiel et al., 2013). 

Our results show the ability of this framework to make early pre-
diction of AD, prior to clinical diagnosis, and, to a certain extent, 
distinguish between cognitively normal (CN) subjects and those who are 
at risk of MCI. Such a model-based predictive framework, together with 
assessments of risk factors, could have great potential in monitoring 
natural progression and to evaluate effect of possible therapeutic in-
terventions. It can also help the clinician in prognostics and advice 
regarding lifestyle changes and preparing patients for likely life events 
of neurodegenerative disease. In a related work by the authors (Mofrad 
et al., 2021) we have demonstrated the proposed framework’s ability to 
incorporate any kind of longitudinal measure, in that case cognitive 
measures from psychometric testing, and also that the MRI-derived 
measures provide additional information to the predictive model. 

2. Methods 

We applied mixed effects models to derive features from longitudinal 
MRI examination, and used the features in machine learning models 
aiming at predicting MCI and AD prior to the clinical events. Our 
approach has two key parts: (i) feature selection, model development 
and validation, and (ii) model-evaluation. We used data from ADNI for 
the first part, and a combination of ADNI and AIBL data for the second, 
making sure no subjects were used for both model training and evalu-
ation of predictive performance. The use of the AIBL data for evaluation 
ensured that our models were evaluated on an independent data set, 
sourced from different institutions and subjects than those represented 
in the training set. This is a crucial part of evaluating predictive models 
as one can otherwise easily overestimate such models’ generalization 
abilities. Fig. 2 illustrates our framework, further explained in this 
section. 

2.1. Data 

Data used in the preparation of this work were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by principal investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial MRI, positron 
emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the pro-
gression of MCI and early AD (Gavidia-Bovadilla et al., 2017). We also 
used data collected by the Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing (AIBL) database (https://aibl.csiro.au). 
Launched in 2006, AIBL is the largest study in Australia to discover 
biomarkers, cognitive characteristics, health and lifestyle factors 
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determining the development of symptomatic AD. It comprises more 
than 1000 participants with a minimum age of 60 years and contains 
healthy volunteers, MCI and AD subjects. AIBL study methodology has 
been reported previously by Ellis et al. (Ellis et al., 2009). 

From these cohorts we used longitudinal brain MRI data from sub-
jects scanned multiple times (at least twice) over a period of 15 years. 
Our data collection consisted of 1673 subjects (with a total of 8002 
scans) from ADNI (7764 scans from 1603 subjects) and AIBL (238 scans 

Fig. 1. Aging causes morphometric changes in the brain and dementia accelerate these changes. (a) Here we illustrate volume reduction of the hippocampi: 
left + right hippocampus (A) and expansion of the lateral ventricles (B) with surface renderings from three scans in the series of eight examinations of the same 
subject. (b) A LME model was used to derive representations (i.e. random effects) of such volume trajectories. The blue lines are observed volume trajectories and the 
red lines are the estimated random effects, based on the eight measurements. Note the small fluctuations or instabilities in the measurements connected by the blue 
line segments. See the Methods section for more details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. a) Predictive framework for longitudinal data: we first put aside a test set from the longitudinal data. Each mixed effects model is applied separately on the 
entire data set and on the training set. The features associated with the test set were computed based on constructing the mixed effects models from the entire data 
set. We used cross-validation on the training set for machine learning model selection. b) Prediction of dementia: we first ran FreeSurfer v.6.0 on the longitudinal 
data from ADNI and AIBL. Then we prepared a table of volumes for brain regions and other information of the subjects. For detecting MCI in task 1, described in 
Section 3.1, we selected HC and cMCI subjects and removed scans labelled as MCI for all subjects. For detecting AD in task 2, described in Section 3.2, we selected 
sMCI and cAD subjects and removed scans labelled AD. Finally, a pipeline based on linear time-dependent mixed models was applied. 
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from 70 subjects). 

2.2. Volumetric biomarkers 

The ADNI data release contains derived subcortical and cortical 
measures computed using FreeSurfer on the T1-weighted MR images. 
FreeSurfer is a powerful, widely used software package providing 
automated analyses of structural and functional neuroimaging data from 
cross-sectional or longitudinal studies (Fischl, 2012). 

However, the FreeSurfer data released by ADNI is based on two 
different software versions, v.4.3 (from March 2009) and v.5.1 (May 
2011), both of which are superseded by v.6.0 released in January 2017. 
Previous studies have demonstrated significant discrepancies between 
different versions of FreeSurfer (Chepkoech et al., 2016; Gronenschild 
et al., 2012; Klauschen et al., 2009), and our own exploratory data an-
alyses based on the ADNI data also demonstrate such an effect. For 
example, Fig. 3a indicates the dissimilarity of volume measurement with 
the two versions of FreeSurfer the ADNI consortium used on their data, 
v.4.3 and v.5.1. The results in Fig. 3 show clear discrepancies between 
hippocampus volumes derived from scanners of field strengths 1.5 Tesla 
and 3.0 Tesla. This highlights the importance of not changing the 
version of FreeSurfer during longitudinal studies, especially those 
involving scanners of different field strengths. 

To get more precise information about the potential negative impact 
of the varying FreeSurfer versions, we conducted an experiment using 
FreeSurfer v.5.3 and v.6.0 (the newest version at the time of experi-
ment). We selected 80 subjects, controlling for disease status (CN/De-
mentia, 40/40), gender (F/M, 40/40), scanner field strength (1.5T/3T, 
40/40), and age ([75,80)/[80,85), 40/40). One of the results is shown in 

Fig. 4, indicates that the effect of FreeSurfer versions differs between CN 
and Dementia subjects. We concluded that the FreeSurfer version is an 
important factor for studying atrophy, especially in the small regions of 
the brain (e.g. the hippocampus), and therefore reprocessed all the ADNI 
and AIBL data using FreeSurfer v.6.0 on Ubuntu 18.04 GNU/Linux 
workstations. This gave us the data set used in the remainder of this 
work. 

2.3. Mixed effects models 

Our framework is based on linear mixed effects models (LME), a 
well-established approach to longitudinal data analysis, used to derive 
regression models from dependent data. In contrast to simpler linear 
models, LME provides a combination of fixed and random effects as 
predictor variables (Bell and Jones, 2015; Harrison et al., 2018; Lind-
strom and Bates, 1990; Müller et al., 2013; West et al., 2014). Mixed 
effects models allow the collection of relatively simple, robust, 
noise-free, and subject-specific representations of brain change over 
time, as illustrated by the red lines in Fig. 1b, based on age at scan as the 
covariate. 

As some brain ROI volumes versus time show linear cohort behavior 
while others behave nonlinearly (cf. Fig. 5), we were motivated to use 
LME models with both linear and nonlinear (quadratic) covariates. Our 
models are based on the model presented by West et al. (West et al., 
2014), also used in our previous work (Lundervold et al., 2019): 

Volr
ij = βr

0 + βr
1Ageij

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
fixedeffect

+ br
0i + br

1iAgeij + εr
ij

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
randomeffect

, (1) 

Fig. 3. Plotting the hippocampi volumes for all ADNI subjects across age indicates a discrepancy between (a) the volumes calculated by different versions of 
FreeSurfer and (b) the volumes recorded from MRI scanners having different field strengths. 

Fig. 4. Box-plots illustrating the importance of 
FreeSurfer version and magnetic field strength 
on measuring the volume of the left hippo-
campus. Each paired box-plot, blue and yellow, 
contains the same T1w volumes processed with 
FreeSurfer v. 6.0 and v. 5.3, respectively. a) 
shows volume difference for subjects diagnosed 
with dementia. b) shows volume difference for 
CN subjects. For dementia the volume discrep-
ancies between FreeSurfer versions are both 
large and statistically significant (paired t-test, 
p <0.05) for both 1.5 and 3 Tesla scanners. For 
CN the version-related differences are insignif-
icant. Note that while we have controlled the 
gender and age in these groups (1.5 and 3 
Tesla) the subjects are different, which makes a 
precise conclusion of the impact of varying 
scaner versions difficult. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this 
article.).   
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where r denotes the brain region, Volrij is the volume of region r for 
subject i : 1,…,N at scan j : 1,…,ni. In our case, ni varies between 2 and 
11. Ageij is age (in years) of subject i at scan j. This is the only predictor 
variable in the model. The βr

0 and βr
1 are fixed effect parameters, while 

br
0i and br

1i are random effects parameters and εr
ij denotes the random 

residual errors. 
As seen in Fig. 5, the cohort volume change in the lateral ventricles 

demonstrate a quadratic behavior, likely due to atrophy over time in 
multiple brain regions leading to an enlargement of the cerebrospinal 
fluid-filled lateral ventricles, compensating the tissue loss (i.e. total 
intracranial volume is preserved). To model this behaviour, we assume 
the rates of volume change are covariant with both age and age2. 
Accordingly, our mixed effect models are: 

Volr
ij = βr

0 + βr
1Ageij + βr

2Age2
ij

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
fixedeffect

+ br
0i + br

1iAgeij + br
2iAge2

ij + εr
ij

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
randomeffect

, (2)  

where (βr
0, β

r
1, βr

2) are fixed effect parameters and (br
0i, br

1i, br
2i) are 

random effect parameters. 
We used the mixedlm function in the Python statsmodels library 

(Seabold and Perktold, 2010) (version 0.11.0) to construct and fit the 
LME models to the data, extracting a mean cohort trajectory (fixed ef-
fect) and the subject-specific trajectories (random effects). In this setting 
the model is linear in the parameters, but can be nonlinear in the 
covariates. The model parameters (βs and bs) were estimated and stored 
for each subject, according to Eq. (1) and Eq. (2). 

Fig. 5 shows fixed and random effects regressions computed by Eq. 
(2) for subjects split into two groups: healthy (HC, n = 407, f/m = 215/ 
192) and non-healthy (sMCI, cAD and sAD, n = 1185, f/m = 492/693). It 
shows a difference between normal age-related atrophy (blue) and 
increased atrophy in the case of neurodegenerative disease (purple). 
This figure indicates the potential of our approach of deriving features 
from LME models for classifying our different subgroups defined in 
Table 1a. 

We used the volume increase of the ventricles as a measure of total 
brain atrophy and the volume change in the hippocampi, as it is a well- 
known structure affected by dementia. 

Derived features 
From the mixed effects models we derived four features for each 

individual ROI trajectory: (i) For the linear models (Eq. (1)), a vector of 
random effect covariates, (br

0i,br
1i), containing the intercept of the group 

and the slope of the random effects line. For the nonlinear models (Eq. 
(2)) we used the vector (br

0i,br
1i,br

2i), the intercept for the group and the 
coefficients of age and age2; (ii) and (iii) The deviation measured at the 
first scan, d0

i , and at the last scan, dni
i , respectively. In other words, the 

derived random effects values at the first and the last scans, (illustrated 
in Fig. 6), as given by 

dj
i = Volij − (β0 + β1Ageij) (3)  

and, for the nonlinear models, d0
i and dni

i given by 

dj
i = Volij − (β0 + β1Ageij + β2Age2

ij); (4)  

where j is either 0 or ni. (iv) The difference of volumes at the first and last 
scans, divided by the number of years between them (Eq. (5), i.e. the 
slope of atrophy from the first to the last measurement): 

Atrophyslope
i =

Vini − Vi0

Ageini
− Agei0

(5)  

where Vi0 and Vini are the volumes at the first and last scans for subject i, 
respectively. Feature (iv) is motivated by the varying number and timing 
of scans for the subjects, and that the atrophy seen over e.g. 10 years for 
one subject can be equal to the atrophy in two years for another (see 
Fig. 6). 

2.4. Predictive models 

As input features to our machine learning models we used the sub-
jects’ sex, average age at scans, age at last scan, and the above four 
features from mixed effects models, scaled according to 

Fig. 5. Longitudinal trajectories for the eTIV- 
normalised volumes of ventricles (a) and 
hippocampi (b) versus age at scan. Healthy 
subjects are marked in blue, non-healthy in 
purple. The thick black curve is the cohort fixed 
effect regression line. The random effects 
computed by Eq. (2) are shown as thin grey 
lines for each subject. Note the steady decrease 
in the hippocampal volumes with time in the 
age range 55–95 years, and the concomitant 
nonlinear increase in the lateral ventricle vol-
umes. The plot indicates that the most extensive 
tissue losses are found among subjects labelled 
as not cognitively normal. (For interpretation of 
the references to color in this figure legend, the 

reader is referred to the web version of this article.).   

Table 1 
a) The original ADNI class labels and the longitudinal labels used in the present 
study with their descriptions. b) Total number of subjects and number of T1- 
weighted MR images according to class label in our study, selected from ADNI 
and AIBL.  

a) 
Source Class Class description 

ADNI 

CN Cognitively normal at visit 
MCI Mild cognitive impairment at visit 
Dementia Alzheimer’s disease at visit 
HC CN at all visits 

Our study 

cMCI Initially CN, later converted to MCI 
rHC Risky CN: cMCI with MCI scans removed 
sMCI MCI at all visits 
cAD Initially MCI, later converted to Dementia 
rMCI Risky MCI: cAD with Dementia scans removed 
sAD Dementia at all visits  

b) 

Class 
ADNI AIBL 

ID #Images  ID #Images  

HC 407 1994 24 90 
cMCI 109 596 24 80 
sMCI 509 2500 11 34 
cAD 269 1540 11 34 
sAD 298 1055 - - 
ALL 1603 7764 70 238  
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standardscaling :
x∼= x − x

σ , ormax − minscaling : x∼=
x − min(x)

max(x) − min(x)
,

where x is a vector of features, x is the mean value of vector x, and σ is 
the standard deviation for x. We trained an ensemble of a logistic 
regression and a support vector machine, based on a soft voting strategy, 
i.e. using the weighted average probabilities from each model in the 
ensemble. Rather than using single models, with their own specific de-
cision logic, an ensemble constructed from multiple diverse, 
individually-tuned models can result in a more robust, higher- 
performing model (Dietterich, 2000; Saeys et al., 2008). We used 
recall and accuracy scores to assess our models during development and 
hyper-parameter selection, using subject-level cross-validation on the 
training set. For each model we set up a grid search through sets of 
hyperparameters, attempting to find the models with the best general-
ization abilities. 

For the support vector classification model (SVC) we evaluated the 
regularization parameter C, polynomial, sigmoid and radial basis func-
tion kernels, and the kernel coefficient. In scikit-learn, the kernel 
coefficient γ is either set to scale or auto. For training data with length n, 
the scale setting means that the model uses 1/(#features × variance(x)) as 
the value of γ and auto means it uses 1/(#features). For the logistic 
regression model we evaluated whether to include an l2 penalty and the 
strength of this regularization (C). For both SVC and logistic regression 
we fixed a random seed, to ensure reproducibility, and set the maximum 
number of iterations to 500. 

We performed feature selection and model development using T1- 
weighted images from the ADNI dataset, and model evaluation with 
data from non-overlapping subjects sourced from both ADNI and AIBL. 
When constructing predictive models for conversion from healthy to 
MCI and from MCI to AD, we removed all MRI measures taken from the 
time of conversion and after. 

We considered two predictive tasks, described using the subject 
classes of Table 1:  

1 HC subjects (n = 133, f/m = 56/77) versus converted to MCI subjects 
(cMCI, n = 133, f/m = 55/78), 

2 stable MCI subjects (sMCI, n = 279, f/m = 114/165) versus con-
verted to AD subjects (cAD, n = 279, f/m = 111/168). 

In task 1 we removed the MRI scans that corresponded to clinical 
diagnoses of MCI from the cMCI subjects. We call the resulting collection 
risky HC (rHC). In task 2 we removed MRI scans corresponding to AD 
from the cAD subjects, calling the resulting collection risky MCI (rMCI). 
Details about diagnosis labels and the number of subjects are given in 
Table 1. 

3. Results 

3.1. Task 1: Prediction of MCI 

We applied our model to two groups of subjects: the subjects marked 
as cognitively normal at all visits (HC) and the risky HC (rHC, i.e. MRI 
data from cMCI subjects obtained by removing the scans clinically 
labelled as MCI). The goal was to investigate whether regular MRI scans 
can separate HC from rHC, as early detection of MCI based on brain 
morphometry is an important but also a very challenging task. The 
subject trajectories for ventricles and hippocampi (Fig. 7) found using 
LME model show atrophy in the hippocampi and volume increase in the 
ventricles during aging, while also showing similarity in the trajectories 
of HC and cMCI. In addition, Fig. 8 shows similar behavior for the 
average volume of ventricles and hippocampi in HC and cMCI groups of 
participants, indicating the difficulty of the classification task. 

We used data from ADNI for training and data from AIBL for model 
evaluation. After optimizing the model based on leave-one-out cross 
validation over the entire training data set (details of hyper-parameters 
are shown in Table 2 and also in the accompanying code repository1), 
we performed a 15 fold cross validation experiment on the training data 
set, controlling for labels, age, and gender in the hold-out folds. The 
mean accuracy and standard deviation obtained by the 15 folds for 
ventricles and hippocampi ranged from 69 ± 6% to 73 ± 7% (see Table 3 
for more details). We then applied the model on the main test set from 
AIBL for evaluation. 

We evaluated the model with eight different feature vectors. First, we 
extracted four sets of features from the ventricles and the hippocampi 
volumes, using linear and quadratic LME models. Then we applied the 
ensemble model on each set of features to find the ones with the highest 
classification performance. We obtained the best accuracy (71%) for 
quadratic features extracted from hippocampi. See Table 3 for details 
about these results. 

Next, we combined the extracted features of ventricles and hippo-
campi to see whether this would improve the classification. The results 
are shown in Table 3. 

3.2. Task 2: Prediction of AD 

The ability to predict AD before the symptoms are caught by the 
clinician is the main objective for our study. We selected sMCI and cAD 
subjects from ADNI and AIBL to investigate to what extent the atrophy 
trajectories can distinguish the stable MCI from the risky MCI (subjects 

Fig. 6. a) Estimated values for random effects at first and last scans (d0
i , dn

i ) are considered as features (ii) and (iii), respectively. b) The linear slop of atrophy (Eq. 
(5)) calculated based on volumes at first and last scans. The time points are different, and therefore the amount of atrophy in 10 years for a subject can be the same as 
a 5 years atrophy for another subject (see the red arrow). Therefore, the slope of total atrophy in each ROI is considered as a feature, (iv), for each subject. 

1 https://github.com/MSamane/A-predictive-framework-for-Alzheimers-d 
isease 
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obtained by removing scans clinically labelled as AD from the cAD 
subjects). On average, the trajectories for ventricles and hippocampi 
show a clear atrophy in the hippocampi and a volume increase of the 
ventricles (Fig. 9). Furthermore, the blue subject trajectories (sMCI) in 
Fig. 9b are on average above the purple trajectories (cAD). 

As for task 1, we first optimized the ensemble machine learning 
model using leave-one-out cross validation over the entire training data 
set from ADNI (details of hyper-parameters are in Table 4 and in the 
accompanying code repository), and then performed a 15 fold cross 
validation experiment on the training data set, controlling for labels, 
age, and gender in the hold-out folds, before evaluating the model on a 
test set. The mean accuracy and standard deviation ranged from 77 ±

4% to 79 ± 6% (see Table 5). 
As there are few cAD subjects in AIBL, the test set was constructed 

using subjects from ADNI (n = 99) and AIBL (n = 22). As for task 1, we 
applied the ensemble models on eight sets of features extracted by linear 

Fig. 7. Task 1: Longitudinal trajectories for the eTIV-normalised volumes of the lateral ventricles (a) and hippocampi (b) versus age at scan. The thick black curve is 
the cohort nonlinear regression line. The random effects computed by Eq. (2) are shown as thin grey lines for each subject. The volume of the hippocampi decreases 
over time, likely contributing to the increase in the lateral ventricle volumes. 

Fig. 8. Ventricles and hippocampi volumes (mm3) versus our longitudinal subjects from the ADNI dataset, labelled according to Table 1a, show a similarity between 
HC and cMCI subjects. The sMCI and cAD show a difference in their ventricle volume expansions and their hippocampi atrophy. The difference between ROIs 
volumes for males and females indicates that gender is an important factor when comparing brain volumes. 

Table 2 
Model hyperparameters for task 1, for different ROIs-feature combinations, 
obtained by applying leave-one-out cross validation on the training set.  

HC vs. rHC LME 
covariates 

Logistic regression SVC 

ROI  scaler C scaler C kernel  

Ventricles 
linear standard 3.13 standard 4.0 poly 
nonlinear standard 7.78 standard 15.56 poly  

Hippocampi 
linear standard 6.7 minmax 7.525 poly 
nonlinear standard 11.16 standard 10 rbf  

Combination 

linear standard 5.6 minmax 6.7 poly 
nonlinear standard 4.5 minmax 8.9 poly 
nonlin vent, 
lin hipp 

standard 4.5 minmax 20 poly 

lin vent, 
nonlin hipp standard 20 minmax 6.7 poly  

Table 3 
Classification results for task 1 for the different ROI features. Note that the accuracy obtained in the 15 fold cross validation experiment is on average better than the 
accuracy in the final test set sourced from AIBL. As the training and hold-out data in the cross validation are both sourced from ADNI, while the test set is based on AIBL, 
this is perhaps not surprising.  

HC vs. rHC LME covariates CrossVal Acc (%) Accuracy (%) Precision (%) Recall (%) F1 score (%)  

ROI    HC rHC HC rHC HC rHC  

Ventricles 
linear 69 ± 4  69 65 76 83 54 73 63 
nonlinear 69 ± 6  69 67 71 75 62 71 67  

Hippocampi 
linear 73 ± 7  67 64 70 75 58 69 64 
nonlinear 71 ± 6  71 67 78 83 58 74 67  

Combination 

linear 70 ± 7  73 69 79 83 62 75 70 
nonlinear 70 ± 8  65 64 65 67 62 65 64 
nonlin vent, lin hipp 71 ± 8  65 64 65 67 62 65 64 
lin vent, nonlin hipp 72 ± 8  73 69 79 83 62 75 70  
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and quadratic LME from ventricles and hippocampi. The results are 
presented in Table 5 and in the confusion matrices in Fig. 10 and Fig. 11. 
The highest accuracy, 78%, was obtained when combining the quadratic 
features from the hippocampi and ventricles. 

4. Discussion 

We have developed a flexible and simple framework for extracting 
features and constructing predictive models from longitudinal MRI in 
relation to cognitive aging and dementia, based on mixed effects models 
and ensemble machine learning methods. A strength of the approach is 
its inherent ability in tackling longitudinal data sets, including situations 
with sets of subjects with a varying number of scans, taken at different 
time intervals, which is a common occurrence in longitudinal studies. 

We applied the framework to predict dementia, using a large data set 
sourced from ADNI and AIBL for training and testing. Based on mea-

Fig. 9. Task 2: Longitudinal trajectories for the normalised volumes of ventricles (a) and hippocampi (b) versus age at the scan. The thick black curve is the cohort 
nonlinear regression line. The random effects computed by Eq. (2) are shown as thin grey lines for each subjects. The volume of hippocampi decreases over time 
contributing to the increase in ventricular volume. The plot indicates that, the most extensive losses are found among cAD subjects. 

Table 4 
Model hyper parameters for task 2, for different ROIs-feature combination, ob-
tained by applying leave-one-out cross-validation using the training set.  

sMCI vs. 
rMCI 

LME 
covariates 

Logistic 
regression 

SVC 

ROI  scaler C scaler C kernel  

Ventricles linear standard 19.9 standard 6.72 rbf 
nonlinear minmax 8.9 minmax 4.5 poly  

Hippocampi 
linear standard 8.89 minmax 11.12 poly 
nonlinear standard 7.78 minmax 2.23 poly  

Combination 

linear standard 6.7 minmax 2.3 poly 
nonlinear standard 4.5 minmax 5.6 poly 
nonlin vent, 
lin hipp 

standard 7.8 minmax 3.4 poly 

lin vent, 
nonlin hipp 

standard 4.5 minmax 1.2 poly  

Table 5 
Classification results for task 2, related to different ROI’s features. The 15-folds validation results are based on only ADNI dataset (subset of training set) while the other 
results are based on final test set, a combination of subjects from ADNI and AIBL data.  

sMCI vs. rMCI LME covariates CrossVal Acc(%) Accuracy(%) Precision(%) Recall(%) F1 score(%)  

ROI    sMCI rMCI sMCI rMCI sMCI rMCI  

Ventricles 
linear 77 ± 4  74 77 71 67 80 72 75 
nonlinear 77 ± 4  73 78 69 64 82 70 75  

Hippocampi 
linear 79± 5  74 78 70 66 82 71 75 
nonlinear 78 ± 5  77 77 77 77 77 77 77  

Combination 

linear 79 ± 5  75 76 74 74 77 75 75 
nonlinear 79 ± 4.5  78 74 82 85 70 79 76 
nonlin vent, lin hipp 78 ± 5  76 78 75 74 78 76 76 
lin vent, nonlin hipp 79 ± 6  74 73 76 79 70 76 73  

Fig. 10. Confusion matrices for classification of sMCI vs. rMCI based on features extracted from LME model (Eq. (1)) for the ventricles (a), the hippocampi (b), and 
the combination of ventricles and hippocampi (c). 
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surements of hippocampal and lateral ventricle volumes in single sub-
jects over time, we were able to make predictions of conversion from 
cognitively normal (CN) to mild cognitive impairment (MCI) and from 
stable MCI to AD, ahead of the corresponding clinical diagnoses, with 
accuracies of 73% and 78%, respectively. The task of predicting con-
version from healthy to MCI is inherently difficult, as it is very chal-
lenging to differentiate cognitive decline related to MCI symptoms from 
cognitive decline with stable cognitive performance at the baseline (Yue 
et al., 2021). Therefore, our above chance level results at this task is 
notable. Since the subjects in our study vary with respect to the number 
of MRI scans and number of years between scans, it is not straightfor-
ward to state how early we can predict the risk of MCI or AD prior to 
diagnosis. In our sample the average time interval between the MRI 
scans for each subject is 0.53 years (HC: 0.58, cMCI: 0.62, sMCI: 0.48, 
cAD: 0.53). Therefore, we cannot expect to obtain predictions of con-
version to MCI or AD earlier than half a year ahead of the actual 
conversion. 

There are a few studies that predict the conversion from HC to MCI 
using multi-domain features, including MRI scans (Mofrad et al., 2021; 
Yue et al., 2021; Albert et al., 2018). Albert et al. (2018) employed 
imaging-biomarkers related to the hippocampus and the entorhinal 
cortex in a sample of 224 subjects (178 HC vs. 46 cMCI) obtaining a 
sensitivity of 64% in predicting the conversion to MCI. Yue et al. (2021) 
obtained an accuracy/sensitivity of 63%/42% in predicting decline to 
MCI using MRI-derived features only, improving their results to 70% 
accuracy and 63% sensitivity when incorporating multi-domain fea-
tures. Regarding conversion from MCI to AD, Young et al. (2013) pre-
dicted this conversion within three years with a 74% accuracy using a 
Gaussian process classification. This is on par with our results of 78% 
accuracy. Interestingly, using a deep learning approach (CNN and RNN) 
and longitudinal MRI data Cui et al. (2019) obtained 72% classification 
accuracy and 76% sensitivity in their experiments to predict pMCI vs. 
sMCI. 

There are several limitations related to the available data material in 
our study and in our methods. For example, the group of patients with 
MCI is highly diverse (Cole and Franke, 2017; Walhovd et al., 2014; 
Nyberg and Pudas, 2019), and a clinical diagnosis of Alzheimer’s disease 
is inherently uncertain, as the disease is only definite post-mortem 
(Association, 2013). This is not captured by the labels in ADNI and 
AIBL, and also holds for similar studies mentioned above. 

Furthermore, variability of non-biological origin in MRI measure-
ments, occuring between subjects and in subject examinations over 
time, will take place (different scanners, calibration issues and scanner 
drift, different head positions, head motion during scan, etc.) (Trefler 
et al., 2016; Di et al., 2019). There are also instabilities and uncertainties 
in the algorithms, libraries and numerical schemes used to compute 
brain region-specific measures that will lead to sources of variation 
affecting predictive models and their performance. In this context, we 

used FreeSurfer v.6.0 and v.5.3 to compute the volumes of the hippo-
campi and lateral ventricles, exploring some of the inherent variation 
when using different version of the software and when the images are 
recorded on scanners of different magnetic field strength (Fig. 3 and 
Fig. 4). Based on this exploration, we re-computed the volumes in the 
ADNI and AIBL data sets using the same version of FreeSurfer (v.6.0) to 
reduce some of the variability. But some instability issues surely remain. 

In this work we focused on establishing a framework using only MRI- 
based morphometric measurements of the hippocampi, as a brain region 
well-known to be impacted by dementia (Leong et al., 2017; Chandra 
et al., 2019; Rodrigue and Raz, 2004; Raz, 2000), and the lateral ven-
tricles, as a global measure (proxy) of brain atrophy (Leong et al., 2017; 
Chandra et al., 2019). Other regions are also impacted by aging and 
dementia, and inclusions of measures from those ROIs could potentially 
lead to improved predictions (Rodrigue and Raz, 2004; Raz, 2000; Leong 
et al., 2017; Hensel et al., 2005; Poulin et al., 2011). 

Another approach taken by some researchers (Cui et al., 2019) is to 
train convolutional and recurrent neural networks to make predictions 
directly from subjects’ MRI recordings (see e.g. Wen et al., 2020, for an 
overview). This has the possible advantage of bypassing a lot of careful 
feature engineering and feature selection with its inherent issues, while 
still making as accurate or more accurate predictions. But it suffers from 
the disadvantage of leading to less explainable models (Lundervold and 
Lundervold, 2019). 

A major opportunity and motivation for applying machine learning 
to neuroimaging examinations in middle aged or elderly subjects that 
are at risk of cognitive decline, mild cognitive impairment or full blown 
AD, is the ability to make predictions for single individuals. Such im-
aging procedures and data analysis will thus support personalized medi-
cine, and with detailed quantification of image-derived features in 
combination with subject-specific information obtained from other 
sources, one can also aim for precision medicine. A contribution of the 
present work is the design and testing of an expressive and flexible 
machine learning framework that supports both longitudinal image- 
derived features as well as cognitive scores (Mofrad et al., 2021), 
where biochemical measures, genetic profiles and other clinical or lab-
oratory measurements can be included. In the context of the present 
work and available data in the used data repositories, further im-
provements could potentially be made by including features from 
multi-modal MRI, such as functional BOLD MRI (Sperling, 2011; Lajoie 
et al., 2017) and diffusion MRI (Doan et al., 2017), or the presence of the 
APOE4 gene variant (Kim et al., 2009; Safieh et al., 2019), or values 
from CSF analyses (Janelidze et al., 2020). Including results from clin-
ical examinations would also be valuable (Holleran et al., 2020), as the 
present authors have reported in (Mofrad et al., 2021). Challenges for 
clinical use include the trade-off between locally available measurement 
techniques and infrastructure (e.g. scanners and protocols), the need for 
feasible patient examination times, the quality and management of 

Fig. 11. Confusion matrices for classification of sMCI vs. rMCI based on features extracted from quadratic mixed effects model (Eq. (2)) for the ventricles (a), the 
hippocampi (b), and the combination of ventricles and hippocampi (c). 
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model predictions in single individuals, and the consideration of avail-
able options for therapy and interventions. 
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Palomera, A., Moberget, T., Brækhus, A., Barca, M.L., et al., 2017. Dissociable 
diffusion MRI patterns of white matter microstructure and connectivity in 
Alzheimer’s disease spectrum. Sci. Rep. 7, 45131. 

Kim, J., Basak, J.M., Holtzman, D.M., 2009. The role of apolipoprotein E in Alzheimer’s 
disease. Neuron 63 (3), 287–303. 

Safieh, M., Korczyn, A.D., Michaelson, D.M., 2019. ApoE4: an emerging therapeutic 
target for Alzheimer’s disease. BMC Med. 17 (1), 1–17. 

Janelidze, S., Stomrud, E., Smith, R., Palmqvist, S., Mattsson, N., Airey, D.C., Proctor, N. 
K., Chai, X., Shcherbinin, S., Sims, J.R., et al., 2020. Cerebrospinal fluid p-tau217 
performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 
11 (1), 1–12. 

Holleran, L., Kelly, S., Alloza, C., Agartz, I., Andreassen, O.A., Arango, C., Banaj, N., 
Calhoun, V., Cannon, D., Carr, V., et al., 2020. The relationship between white 
matter microstructure and general cognitive ability in patients with schizophrenia 
and healthy participants in the ENIGMA consortium. Am. J. Psychiatry pp. appi-ajp.  

S.A. Mofrad et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0190
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0190
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0190
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0195
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0195
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0200
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0200
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0200
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0200
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0205
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0205
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0210
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0210
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0215
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0215
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0215
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0220
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0220
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0220
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0225
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0225
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0225
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0230
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0230
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0230
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0230
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0235
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0235
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0240
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0240
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0245
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0245
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0245
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0250
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0250
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0255
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0255
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0260
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0260
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0265
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0265
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0265
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0270
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0270
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0270
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0275
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0275
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0275
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0275
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0280
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0280
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0285
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0285
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0290
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0290
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0290
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0295
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0295
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0295
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0300
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0300
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0300
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0300
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0305
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0305
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0310
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0310
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0315
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0315
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0315
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0315
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0320
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0320
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0320
http://refhub.elsevier.com/S0895-6111(21)00059-8/sbref0320

	A predictive framework based on brain volume trajectories enabling early detection of Alzheimer’s disease
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Volumetric biomarkers
	2.3 Mixed effects models
	Derived features

	2.4 Predictive models

	3 Results
	3.1 Task 1: Prediction of MCI
	3.2 Task 2: Prediction of AD

	4 Discussion
	Declaration of interests
	Authors’ contribution
	Declaration of Competing Interest
	Acknowledgements
	References


